65 research outputs found

    Time-extended inductive tokamak discharges with differentially-tilted toroidal field coils

    Get PDF
    The strong toroidal magnetic field required for plasma confinement in tokamaks is generated by a set of D-shaped coils lying equidistant on meridian planes toroidally located around the central axis of the device. A major technological challenge tied to this configuration is represented by the large Lorentz force acting on the coils and arising from the interaction of the coils’ currents with the magnetic field generated by the coil system itself. As this force is given by the cross product of the coil current and the magnetic field, various kinds of coil geometry modification have been proposed to alleviate this problem, from an inclination of the entire coil in order to maintain its planarity, to azimuthal tilting of all, or parts of, the coil profile. When the inner legs of the coils are tilted, apart from a reduction of the electromagnetic forces, a solenoid-like structure is formed which introduces additional magnetic flux linked to the plasma. Considering compact, high field devices, it is shown that when this additional flux is exploited, totally or in part, to ramp up the plasma current, the discharge time can be extended by a significant amount without resorting to noninductive current drive systems. Operational scenarios with inner-leg-tilted toroidal field coils are presented

    Neon seeding effects on two high-performance baseline plasmas on the Joint European Torus

    Get PDF
    We present the JETTO-QuaLiKiz-SANCO fully predictive modelling of two JET-ILW high-performance baseline plasmas, a Ne seeded shot and an equivalent unseeded one. The motivation of the work lies in the experimental observation of a slightly higher confinement and performance of the Ne seeded shot with respect to the unseeded one, despite sharing the same main plasma parameters and heating powers. Moreover, the neon seeded shot shows a lower pedestal electron density and a higher core ion temperature with respect to the unseeded one. Integrated modelling is performed in order to understand if the cause of the improved confinement has to be ascribed to the improved pedestal parameters with neon seeding or if an impurity-induced turbulence stabilization is at play. The QuaLiKiz transport model is used for predicting the electron density, electron and ion temperatures and rotation in the core up to the pedestal top, while the pedestal is empirically modelled to reproduce the experimental kinetic profiles. The thermal diffusivities of the two shots, computed by QuaLiKiz, are compared, as well as the turbulence spectra, suggesting that the reduced transport found in the neon seeded shot is due in part to the stabilization of ion temperature gradient and electron temperature gradient modes. Further modelling is performed in order to disentangle the neon seeding effects, which are a direct effect on the turbulence stabilization and an indirect effect on the pedestal parameters. The results suggest that the improved performance with neon is due to a combination of turbulence stabilization and improved pedestal parameters

    Modelling performed for predictions of fusion power in JET DTE2: overview and lessons learnt

    Get PDF
    For more than a decade, an unprecedented predict-first activity has been carried in order to predict the fusion power and provide guidance to the second Deuterium–Tritium (D–T) campaign performed at JET in 2021 (DTE2). Such an activity has provided a framework for a broad model validation and development towards the D–T operation. It is shown that it is necessary to go beyond projections using scaling laws in order to obtain detailed physics based predictions. Furthermore, mixing different modelling complexity and promoting an extended interplay between modelling and experiment are essential towards reliable predictions of D–T plasmas. The fusion power obtained in this predict-first activity is in broad agreement with the one finally measured in DTE2. Implications for the prediction of fusion power in future devices, such as ITER, are discussed

    Overview of the FTU results

    Get PDF
    Since the 2018 IAEA FEC Conference, FTU operations have been devoted to several experiments covering a large range of topics, from the investigation of the behaviour of a liquid tin limiter to the runaway electrons mitigation and control and to the stabilization of tearing modes by electron cyclotron heating and by pellet injection. Other experiments have involved the spectroscopy of heavy metal ions, the electron density peaking in helium doped plasmas, the electron cyclotron assisted start-up and the electron temperature measurements in high temperature plasmas. The effectiveness of the laser induced breakdown spectroscopy system has been demonstrated and the new capabilities of the runaway electron imaging spectrometry system for in-flight runaways studies have been explored. Finally, a high resolution saddle coil array for MHD analysis and UV and SXR diamond detectors have been successfully tested on different plasma scenarios

    Spectroscopic camera analysis of the roles of molecularly assisted reaction chains during detachment in JET L-mode plasmas

    Get PDF
    The roles of the molecularly assisted ionization (MAI), recombination (MAR) and dissociation (MAD) reaction chains with respect to the purely atomic ionization and recombination processes were studied experimentally during detachment in low-confinement mode (L-mode) plasmas in JET with the help of experimentally inferred divertor plasma and neutral conditions, extracted previously from filtered camera observations of deuterium Balmer emission, and the reaction coefficients provided by the ADAS, AMJUEL and H2VIBR atomic and molecular databases. The direct contribution of MAI and MAR in the outer divertor particle balance was found to be inferior to the electron-atom ionization (EAI) and electron-ion recombination (EIR). Near the outer strike point, a strong atom source due to the D+2-driven MAD was, however, observed to correlate with the onset of detachment at outer strike point temperatures of Te,osp = 0.9-2.0 eV via increased plasma-neutral interactions before the increasing dominance of EIR at Te,osp < 0.9 eV, followed by increasing degree of detachment. The analysis was supported by predictions from EDGE2D-EIRENE simulations which were in qualitative agreement with the experimental observations

    Overview of JET results for optimising ITER operation

    Get PDF
    The JET 2019–2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major neutral beam injection upgrade providing record power in 2019–2020, and tested the technical and procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle (α) physics in the coming D–T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed shattered pellet injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design and operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D–T benefited from the highest D–D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER

    Overview of JET results for optimising ITER operation

    Get PDF
    The JET 2019–2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major neutral beam injection upgrade providing record power in 2019–2020, and tested the technical and procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle (α) physics in the coming D–T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed shattered pellet injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design and operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D–T benefited from the highest D–D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER

    Shattered pellet injection experiments at JET in support of the ITER disruption mitigation system design

    Get PDF
    A series of experiments have been executed at JET to assess the efficacy of the newly installed shattered pellet injection (SPI) system in mitigating the effects of disruptions. Issues, important for the ITER disruption mitigation system, such as thermal load mitigation, avoidance of runaway electron (RE) formation, radiation asymmetries during thermal quench mitigation, electromagnetic load control and RE energy dissipation have been addressed over a large parameter range. The efficiency of the mitigation has been examined for the various SPI injection strategies. The paper summarises the results from these JET SPI experiments and discusses their implications for the ITER disruption mitigation scheme

    Testing a prediction model for the H-mode density pedestal against JET-ILW pedestals

    Get PDF
    The neutral ionisation model proposed by Groebner et al (2002 Phys. Plasmas 9 2134) to determine the plasma density profile in the H-mode pedestal, is extended to include charge exchange processes in the pedestal stimulated by the ideas of Mahdavi et al (2003 Phys. Plasmas 10 3984). The model is then tested against JET H-mode pedestal data, both in a 'standalone' version using experimental temperature profiles and also by incorporating it in the Europed version of EPED. The model is able to predict the density pedestal over a wide range of conditions with good accuracy. It is also able to predict the experimentally observed isotope effect on the density pedestal that eludes simpler neutral ionization models

    First-Principles Density Limit Scaling in Tokamaks Based on Edge Turbulent Transport and Implications for ITER

    Get PDF
    A first-principles scaling law, based on turbulent transport considerations, and a multimachine database of density limit discharges from the ASDEX Upgrade, JET, and TCV tokamaks, show that the increase of the boundary turbulent transport with the plasma collisionality sets the maximum density achievable in tokamaks. This scaling law shows a strong dependence on the heating power, therefore predicting for ITER a significantly larger safety margin than the Greenwald empirical scaling [Greenwald et al., Nucl. Fusion, 28, 2199 (1988)] in case of unintentional high-to-low confinement transition
    corecore